



| Classifications   |             |              |  |
|-------------------|-------------|--------------|--|
| EN ISO 24373      | AWS A5.7    | Material-No. |  |
| S Cu 6100 (CuAl7) | ER CuAl-A 1 | 2.0921       |  |

## Characteristics and field of use

UTP A 34 is used for copper aluminium alloys (aluminium bronzes) with 5-9 % Al, copper-zinc alloys (brass and special brass). Weld cladding on cast iron materials and steel.

The weld deposit of UTP A 34 is resistant to corrosion and seawater and has good gliding properties metal-metal. UTP A 34 is easy weldable and obtains a clean weld surface.

| Typical analysis in % |       |         |     |       |  |  |
|-----------------------|-------|---------|-----|-------|--|--|
| Mn                    | Ni    | Cu      | Al  | Fe    |  |  |
| < 0.5                 | < 0.5 | balance | 8.0 | < 0.5 |  |  |

| wecnanicai pro                      | viecnanical properties of the weld metal |                           |          |                  |               |  |
|-------------------------------------|------------------------------------------|---------------------------|----------|------------------|---------------|--|
| Yield<br>strength R <sub>P0.2</sub> | Tensile strength R <sub>m</sub>          | Elongation A <sub>5</sub> | Hardness | El. conductivity | Melting range |  |
| MPa                                 | MPa                                      | %                         | НВ       | s·m/mm²          | °C            |  |
| 180                                 | 400                                      | 40                        | 120      | 8                | 1030 - 1040   |  |

## **Welding instruction**

The weld seam area has to be machined to a metallic bright by grinding, sand blasting or pickling in order to avoid crack formation or the development of pores.

## **Approvals**

-

| Wire diameter [mm] | Current type | Shielding gas (EN ISO 14175) |
|--------------------|--------------|------------------------------|
| 1.0                | DC (+)       | 11                           |
| 1.2                | DC (+)       | 11                           |
| 1.6                | DC (+)       | I 1                          |