

Thermanit GE-316L - Marathon 213

SAW wire/flux combination, high-alloyed, austenitic stainless

Classifications

EN ISO 14343-A	AWS A5.9 / SFA-5.9	EN ISO 14174
S 19 12 3 L	ER316L	S F CS 2 DC

Characteristics and typical fields of application

Thermanit GE-316L - Marathon 213 is a wire-flux-combination for welding of stainless steel grades such as 1.4435 / 316L. Solid SAW wire of S 19 12 3 L / ER316L type for joining and surfacing application with matching and similar unstabilized austenitic CrNi(N) and CrNiMo(N)-steels and cast steel grades. Corrosion resistance similar to matching low-carbon and stabilized austenitic CrNiMo-steels. Max. service temperature 400°C. Low temperature service down to -196°C.

Marathon 213 is an fused flux with good welding properties with nice bead appearance and good slag detachability. For more information regarding this sub-arc welding flux, see the separate datasheet.

Base materials

- $1.4401\ X5CrNiMo17-12-2, 1.4404\ X2CrNiMo17-12-2, 1.4409\ GX2CrNiMo19-11-2, 1.4429\ X2CrNiMoN17-12-3, 1.4409\ GX2CrNiMo19-11-2, 1.4429\ X2CrNiMoN17-12-3, 1.4409\ GX2CrNiMo19-11-2, 1.4409\ X2CrNiMoN17-12-3, 1.4409\ GX2CrNiMo19-11-2, 1.4409\ X2CrNiMoN17-12-3, 1.4409\ GX2CrNiMoN19-11-2, 1.4409\ X2CrNiMoN19-11-2, 1.4409\ GX2CrNiMoN19-11-2, 1.4409\ X2CrNiMoN19-11-2, 1.4409\ GX2CrNiMoN19-11-2, 1.4409\ X2CrNiMoN19-11-2, 1.4409\ X2C$
- 1.4432 X2CrNiMo17-12-3, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-12-3, 1.4571 X6CrNiMoTi17-12-2,
- 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12

UNS S31600, S31603, S31635, S31640, S31653

AISI 316L, 316Ti, 316Cb

is

71 7						
wt%	C	Si	Mn	Cr	Ni	Mo
wire	0.01	0.45	1.6	18.5	12.2	2.7
all-weld metal	0.015	0.70	1.1	17.9	12.2	2.6

Mechanical properties of all-weld metal - typical values (min. values)

Condition	Yield strength R _{p0.2}	Tensile strength R _m	Elongation A (L ₀ =5d ₀)	Impact energy ISO-V F	(V J
	MPa	MPa	%	20°C	-60°C
u	405 (≥ 350)	580 (≥ 560)	37 (≥ 30)	90 (≥ 70)	80

u untreated, as-welded

Operating data

Dimension mm	Current A	Voltage V
2.0	250 – 350	28 – 32
2.4	300 – 400	29 – 33
3.2	350 – 500	29 – 33
4.0	425 – 575	30 – 34

No preheating. Suggested heat input is max. $2.0 \, \text{kJ/mm}$ and interpass temperature max. $150 \, ^{\circ}\text{C}$. Polarity: DC+ Post-weld heat treatment generally not needed. In special cases, solution annealing can be performed at $1050 \, ^{\circ}\text{C}$ followed by water quenching.

Approvals

TÜV (09613), CE, DNV GL, LR