

Thermanit MTS 5 CoT

TIG rod / wire, creep resistant

Classifications

EN ISO 21952-A	AWS A5.28 / SFA-5.28
W Z CrCoW 11 2 2	ER110S-G

Characteristics and typical fields of application

TIG rod and wire of W Z CrCoW 11 2 2 / ER110S-G type for manual and mechanized gas tungsten arc welding. The 12Cr-1.5W-1.5Co-0.3Mo-V-NbB type weld metal exhibits a fully tempered martensitic microstructure with favorable mechanical properties in post weld heat treated condition. The range of application covers joint welding of VM12-SHC tube and pipe used in the thermal power industry. Thanks to the controlled Mn+Ni content othe A_{c1} Temperature is certainly above 790°C. Approved for high temperature service under creep conditions up to 650 °C. The chemical composition of is optimized in order to provide a high creep resistant and ductile weld metal after post weld heat treatment along with low level of trace elements.

Base materials

Similar alloyed creep resistant steel and castings like VM12-SHC – 1.4915 – X12CrCoWMoVNb12-2-2 (VdTÜV WB 560)

Typical analysis												
	С	Si	Mn	Cr	Ni	Мо	W	V	Со	Nb	Ν	В
wt%	0.16	0.4	0.4	11.4	0.4	0.3	1.5	0.2	1.55	0.055	0.04	0.003

Structure: Martensite, suitable for quenching and tempering

Mechanical properties of all-weld metal - typical values (min. values)

Condition	Yield strength R _{p0.2}	Tensile strength R _m	Elongation A (L ₀ =5d ₀)	Impact energy ISO-V KV J	
	МРа	МРа	%	20°C	
S	700 (≥ 620)	840 (≥ 760)	18 (≥ 15)	60 (≥ 40)	

s heat treated, tempered 770 °C / 2 h - shielding gas I1

Operating data

-t						
× † †	Polarity	DC -	Dimension mm			
	Shielding gas	11	0.8			
	(EN ISO 14175)		1.0			
	Rod marking	+ VM12-SHC (X12CrCoW-	1.6 × 1000			
		VNb12-2-2)	2.0 × 1000			
			2.4 × 1000			

Preheat and interpass temperature should be controlled between 200 and 280 °C. In order to optimize impact energy, a multi-layer welding technique that ensures small layer thickness and low heat input is recommended. After welding the weld seam must be cooled below 100 °C in order to complete the martensitic transformation prior to PWHT which is typically carried out between 750 and 770 °C for at least 0,5 h for thin section tube welds and at least 2 h for thicker sections. The un-tempered martensitic microstructure is very sensitive to cold and stress corrosion cracking. Residual welding and external stresses must be reduced to a minimum. Any exposure to mosture must be avoided in the as welded condition. Keeping a temperature above the dew point or storage in humidity controlled atmosphere is highly recommended bridging the gap between welding and final post weld heat treatment.

Approvals

TÜV (10578), CE