

Thermanit GE-316L - Marathon 805

SAW wire/flux combination, high-alloyed, austenitic stainless (Avesta 316L/SKR - Avesta Flux 805)

	and if i	aatia	-
Ula	issifi		IIS -

EN ISO 14343-A	AWS A5.9 / SFA-5.9	EN ISO 14174	
S 19 12 3 L	ER316L	S A AF 2 DC	

Characteristics and typical fields of application

Thermanit GE-316L - Marathon 805 is a wire-flux-combination for welding of stainless steel grades such as 1.4435 / 316L. Solid SAW wire of S 19 12 3 L / ER316L type for joining and surfacing application with matching and similar unstabilized austenitic CrNi(N) and CrNiMo(N)-steels and cast steel grades. Corrosion resistance similar to matching low-carbon and stabilized austenitic CrNiMo-steels. Max. service temperature 400°C. Low temperature service down to –196°C. The former product name of the SAW wire was "Avesta 316L/SRR".

Marathon 805 is an agglomerated basic flux that ensures good welding properties with nice bead appearance and good slag detachability. The flux avoids excessive Cr-burn-out (Cr-support). For more information regarding this sub-arc welding flux, see the separate datasheet. The former product name of the SAW flux was "Avesta Flux 805".

Base materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4409 GX2CrNiMo19-11-2, 1.4429 X2CrNiMoN17-12-3, 1.4432 X2CrNiMo17-12-3, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-12-3, 1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12 UNS S31600, S31603, S31635, S31640, S31653 AISI 316L, 316Ti, 316Cb

Typical analysis

wt%	С	Si	Mn	Cr	Ni	Мо
wire	0.01	0.45	1.6	18.5	12.2	2.7
all-weld metal	0.01	0.60	1.2	19	12.2	2.7

Mechanical properties of all-weld metal - typical values (min. values)

Condition	Yield strength R _{p0.2}	Tensile strength R_{m}	Elongation A ($L_0 = 5d_0$)	Impact energy ISO-V KV J	
	MPa	MPa	%	20°C	-196°C
u	430 (≥ 350)	570 (≥ 550)	36 (≥ 30)	80 (≥ 60)	35
development of the development o					

u untreated, as-welded

Operating data

<h+ +="" th="" <=""><th>Dimension mm</th><th>Current A</th><th>Voltage V</th></h+>	Dimension mm	Current A	Voltage V
⋝↓││	2.0	250 – 350	28 – 32
	2.4	300 - 400	29 – 33
	3.2	350 - 500	29 – 33
	4.0	425 – 575	30 - 34

No preheating. Suggested heat input is max. 2.0 kJ/mm and interpass temperature max. 150°C. Polarity DC+. Post-weld heat treatment generally not needed. In special cases, solution annealing can be performed at 1050°C followed by water quenching.

Approvals

TÜV (06036), DNV GL