

Thermanit H-347

SAW wire, high-alloyed, austenitic, stainless

Classifications							
EN ISO 14343-A				AWS A5.9 / SFA-5.9			
S 19 9 Nb				ER347			
Characteristics and typical fields of application							
Solid wire of S 19 9 Nb / ER347 type for joining and surfacing application with matching and similar stabilized and non-stabilized austenitic CrNi(N)-steels and cast steel grades. Resistant to intercrystalline corrosion and wet corrosion up to 400°C. Corrosion resistance similar to matching stabilized austenitic CrNi-steels and cast steel grades.							
Recommended SAW flux: Marathon 213 Marathon 431							
Base materials							
1.4301 X5CrNi18-10, 1.4306 X2CrNi19-11, 1.4311 X2CrNiN8-9, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5Cr- NiNb18-10, 1.4550 X6CrNiNb18-10, 1.4552 GX5CrNiNb19-11 UNS S30400, S30403, S30453, S32100, S34700 AISI 347, 321, 302, 304, 304L, 304LN ASTM A296 Gr. CF 8 C, A157 Gr. C9, A320 Gr. B8C or D							
Typical analysis							
	С	Si	Mn	Cr		Ni	Nb
wt%	0.05	0.40	1.7	19.2		9.2	0.65
Operating data							
			Di	mension mm	Current	A Vo	ltage V
			2.4	1	300 - 40	00 28	3 – 32
			3.0)	320 - 45	50 29	- 33
			3.2	2	350 - 50	00 29	- 33
4.0)			
Suggested heat input is max. 1.5 kJ/mm and interpass temperature max. 100°C. Generally no heat treatment needed. Suggested heat input is max. 2.0 kJ/mm and interpass temperature max. 150°C.							
Approvals							
-							